Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Biotechnol (NY) ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602600

RESUMO

Prorocentrum lima, a widely distributed dinoflagellate known for its production of harmful biotoxins, poses a significant threat to humans, aquaculture, and marine ecosystems. As a result, the detection of this toxic alga in coastal waters has become an urgent research focus. In this study, a rapid, sensitive, and cost-effective detection method based on loop-mediated isothermal amplification (LAMP) was developed to identify P. lima. In this method, cell extracts of P. lima were diluted and used directly as templates for amplification, eliminating the need for nucleic acid purification and simplifying the detection process. Hydroxy naphthol blue (HNB) was incorporated into the reaction mix to facilitate result interpretation, enabling visual determination of the amplification outcome with the naked eye. The entire detection process, from DNA extraction to template amplification and product detection, could be completed within 80 min using a simple constant temperature-control device. This LAMP-based detection method demonstrated excellent reliability, specificity, and a low detection limit of 5.87 cells/mL for DNA crude extract. The assay offered an efficient alternative to PCR for rapid detection of P. lima. By streamlining the detection process and offering a visual readout, this technique holds promise for efficient and routine monitoring of harmful algal species, benefitting both research efforts and environmental management strategies.

2.
Mar Pollut Bull ; 186: 114390, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36459774

RESUMO

N2O is among the most potent greenhouse gases. In this study, we investigated one of the important N2O production hotspots, the continental margins. We looked at N2O spatiotemporal distributions in situ as well as the potential contributions of nitrification and denitrification to N2O production in sediment cores from the Bohai and South Yellow Seas. Real-time PCR and shotgun metagenomics sequencing were used to analyze the microbial communities related to N2O production. The results showed that N2O concentrations roughly decreased with depth-a trend that was consistent throughout the year and showed no significant seasonal variations. When all the research stations along the continental margin were considered, the estuary exhibited the lowest average N2O concentration. Moreover, nitrification was identified as the main process responsible for N2O production in estuary areas. This study demonstrates that spatial, as opposed to temporal, heterogeneity is the primary factor influencing N2O concentration differences in sediments.


Assuntos
Desnitrificação , Óxido Nitroso , Óxido Nitroso/análise , Nitrificação , Oceanos e Mares , Estuários
3.
J Microbiol ; 60(8): 814-822, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35835958

RESUMO

The differences in methanogen abundance and community composition were investigated between nearshore and offshore sediments in the South Yellow Sea (SYS). Shannon, Simpson, and Chao1 indices revealed a higher diversity of methanogens in the nearshore sediments than in the offshore sediments. The Mann-Whitney U test demonstrated that the relative abundance of Methanococcoides was significantly higher in the offshore sediments, while the relative abundances of Methanogenium, Methanosarcina, Methanosaeta, Methanolinea, and Methanomassiliicoccus were significantly higher in the nearshore sediments (P < 0.05). The abundance of the mcrA gene in the nearshore sediments was significantly higher than that in the offshore sediments. Furthermore, a similar vertical distribution of the methanogen and sulfate-reducing bacteria (SRB) abundances was observed in the SYS sediments, implying there is potential cooperation between these two functional microbes in this environment. Finally, total organic carbon (TOC) was significantly correlated with methanogen community composition.


Assuntos
Euryarchaeota , Sedimentos Geológicos , China , Euryarchaeota/genética , Sedimentos Geológicos/microbiologia , Filogenia
4.
Sci Total Environ ; 825: 153972, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35189237

RESUMO

Nitrification is a central process in nitrogen cycle in the ocean. Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play significant roles in ammonia oxidation which is the first and rate-limiting step in nitrification, and their differential contribution to nitrification is an important issue, attracting extensive attention. In this study, based on the quantification of archaeal and bacterial amoA gene and the measurement of potential nitrification rate (PNR), we investigated the spatiotemporal dynamics of PNRs and the amoA gene abundance and transcript abundance of aerobic ammonia oxidizers in surface sediments collected in summer and spring across ~900 km of the Bohai Sea and Yellow Sea in China. The results revealed that the contribution of AOA to nitrification was greater than that of AOB in coastal sediments, probably due to salinity and ammonia concentration. Besides, seasons had significant effect on amoA gene abundance and transcript abundance, especially for AOA, while both seasons and sea areas had significant influence on PNR of AOA and AOB. Further analysis showed complex relationships among amoA gene abundances, transcript abundances and PNRs. More importantly, both spatial (geographic distance) and environmental factors were vital in explaining the variations of ammonia-oxidizing microorganism abundances and the PNRs.


Assuntos
Amônia , Archaea , Archaea/genética , Bactérias/genética , China , Sedimentos Geológicos/microbiologia , Nitrificação , Oxirredução , Filogenia , Microbiologia do Solo
5.
Sci Total Environ ; 815: 152645, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34998777

RESUMO

Although coastal sediments are major contributors to the production of atmospheric methane, the effects of environmental conditions on methanogenesis and the community of methanogenic archaea are not well understood. Here, we investigated the methanogenesis pathways in nearshore and offshore sediments from the South Yellow Sea (SYS). Moreover, the effects of the supply of methanogenic substrates (H2/CO2, acetate, trimethylamine (TMA), and methanol) and temperature on methanogenesis and the community of methanogenic archaea were further determined. Methylotrophic, hydrogenotrophic and acetotrophic methanogenesis were found to be responsible for biogenic methane production in nearshore sediments. In the offshore sediments, methylotrophic methanogenesis was the predominant methanogenic pathway. The changes in methanogenic community structure under different substrate amendments were characterized. Lower diversities were detected in substrate-amended samples with methanogenic activity. Hydrogenotrophic Methanogenium, multitrophic Methanosarcina, methylotrophic Methanococcoide, Methanococcoide or methylotrophic Methanolobus were dominant in H2/CO2-, acetate-, TMA- and methanol-amended sediment slurries, respectively. PCoA showed that the methanogen community in H2/CO2 and acetate amendments exhibited greater differences than those in other treatments. Lower temperature (10 °C) limits hydrogenotrophic and acetoclastic methanogenesis, but methylotrophic methanogenesis is much less affected. The response of methanogen diversity to the incubation temperature varied among the different substrate-amended slurries. The multitrophic methanogen Methanosarcina became increasingly abundant in H2/CO2- and acetate-amended sediment slurries when the temperature increased from 10 to 30 °C.


Assuntos
Metano , Methanosarcinaceae , Archaea , Methanosarcina , Temperatura
6.
Huan Jing Ke Xue ; 42(7): 3472-3481, 2021 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-34212674

RESUMO

It is known that methanogens play a critical role in the carbon cycle in soil, while methanogen community characteristics and their environmental influencing factors in the soil planted with salt-tolerant rice remain unclear. In this study, methanogen abundance, community composition, and relationships with environmental factors in soils planted with the salt-tolerant rice (YC1703) and ordinary rice (Lindao 10) were evaluated in the rice improvement demonstration base of Qingdao Wisdom Agricultural Industry using real-time fluorescence quantitative PCR and Illumina high-throughput sequencing. The results indicated that the abundance and community richness of methanogens in Lindao 10 soil were significantly higher than those in YC1703 soil, and methanogens in YC1703 soil exhibited higher diversity. The combined effects of rice varieties, rice growth period, and environmental factors had impacts on the methanogen community. The hydrogenotrophic methanogens were dominant in the YC1703 and Lindao 10 soils; thus, we speculated that the dominant pathway of methane production in these soils was hydrogenotrophic methanogenesis.


Assuntos
Euryarchaeota , Oryza , Metano , RNA Ribossômico 16S , Solo , Microbiologia do Solo
7.
J Phycol ; 57(1): 172-182, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32975309

RESUMO

The diazotrophic cyanobacterium Trichodesmium is thought to be a major contributor to the new N in parts of the oligotrophic, subtropical, and tropical oceans. In this study, physiological and biochemical methods and transcriptome sequencing were used to investigate the influences of ocean acidification (OA) on Trichodesmium erythraeum (T. erythraeum). We presented evidence that OA caused by CO2 slowed the growth rate and physiological activity of T. erythraeum. OA led to reduced development of proportion of the vegetative cells into diazocytes which included up-regulated genes of nitrogen fixation. Reactive oxygen species (ROS) accumulation was increased due to the disruption of photosynthetic electron transport and decrease in antioxidant enzyme activities under acidified conditions. This study showed that OA increased the amounts of (exopolysaccharides) EPS in T. erythraeum, and the key genes of ribose-5-phosphate (R5P) and glycosyltransferases (Tery_3818) were up-regulated. These results provide new insight into how ROS and EPS of T. erythraeum increase in an acidified future ocean to cope with OA-imposed stress.


Assuntos
Trichodesmium , Concentração de Íons de Hidrogênio , Fixação de Nitrogênio , Oceanos e Mares , Espécies Reativas de Oxigênio , Água do Mar
8.
Appl Environ Microbiol ; 87(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33355106

RESUMO

Rising atmospheric CO2 concentrations are causing ocean acidification (OA) with significant consequences for marine organisms. Because CO2 is essential for photosynthesis, the effect of elevated CO2 on phytoplankton is more complex and the mechanism is poorly understood. Here we applied RNA-seq and iTRAQ proteomics to investigate the impacts of CO2 increase (from ∼400 to 1000 ppm) on the temperate coastal marine diatom Skeletonema marinoi We identified 32,389 differentially expressed genes (DEGs) and 1,826 differentially expressed proteins (DEPs) from elevated CO2 conditions, accounting for 48.5% of total genes and 25.9% of total proteins we detected, respectively. Elevated pCO2 significantly inhibited the growth of S marinoi, and the 'omic' data suggested that this might be due to compromised photosynthesis in the chloroplast and raised mitochondrial energy metabolism. Furthermore, many genes/proteins associated with nitrogen metabolism, transcriptional regulation, and translational regulation were markedly up-regulated, suggesting enhanced protein synthesis. In addition, S marinoi exhibited higher capacity of ROS production and resistance to oxidative stress. Overall, elevated pCO2 seems to repress photosynthesis and growth of S marinoi, and through massive gene expression reconfiguration induce cells to increase investment in protein synthesis, energy metabolism and antioxidative stress defense, likely to maintain pH homeostasis and population survival. This survival strategy may deprive this usually dominant diatom in temperate coastal waters of its competitive advantages in acidified environments.Importance Rising atmospheric CO2 concentrations are causing ocean acidification with significant consequences for marine organisms. Chain-forming centric diatoms of Skeletonema is one of the most successful groups of eukaryotic primary producers with widespread geographic distribution. Among the recognized 28 species, S. marinoi can be a useful model for investigating the ecological, genetic, physiological, and biochemical characteristics of diatoms in temperate coastal regions. In this study, we found that the elevated pCO2 seems to repress photosynthesis and growth of S. marinoi, and through massive gene expression reconfiguration induce cells to increase investment in protein synthesis, energy metabolism and antioxidative stress defense, likely to maintain pH homeostasis and population survival. This survival strategy may deprive this usually dominant diatom in temperate coastal waters of its competitive advantages in acidified environments.

9.
Sci Total Environ ; 750: 142252, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33182220

RESUMO

The biogeography of active microbial communities and the underlying mechanisms in marine sediments are important in microbial ecology but remain unclear. Here, using qPCR and high-throughput sequencing, we investigated bacterial and archaeal community abundances and activities by quantifying the abundance and expression of the 16S rRNA gene respectively, RNA-derived bacterial and archaeal community biogeography, assembly mechanisms and co-occurrence relationships in surface sediment samples from the Bohai Sea (BS), South Yellow Sea (SYS) and the north East China Sea (NECS) of the eastern Chinese marginal seas. The results revealed a higher heterogeneity of bacterial and archaeal community activities than of abundances and heterogeneous ecological functions among areas reflected by community compositions. Furthermore, clear geographic groups (i.e., the BS, SYS and NECS groups) were observed for all, abundant and rare active bacterial and archaeal communities, accompanied by significant distance-decay patterns. However, the abundant and rare taxa showed inconsistent geographic patterns. More importantly, deterministic processes played a greater role than stochastic processes in active bacterial and archaeal community assembly. The rare taxa had weaker abilities to disperse and/or adapt and more complex ecological processes than the abundant taxa. In addition, this study also showed that intertaxa competition was the dominant interaction between active bacterial and archaeal members, which could greatly contribute to dispersal limitation. Moreover, active bacterial and archaeal co-occurrence patterns showed significant distance-decay patterns, which were consistent with the community compositions.


Assuntos
Archaea , Bactérias , Archaea/genética , Bactérias/genética , China , Sedimentos Geológicos , Oceanos e Mares , Filogenia , RNA Ribossômico 16S/genética
10.
Huan Jing Ke Xue ; 41(5): 2485-2495, 2020 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608868

RESUMO

Microorganisms in marine sediments play crucial roles in biogeochemical processes. Currently, 16S rRNA gene-based sequencing is popular for studying bacterial communities; however, the DNA used in analysis can include not only that from active microorganisms but also that from inactive microorganisms, while the RNA can represent active microorganisms and more recent activity in the environment; therefore, a study of the difference between the total bacterial community based on the 16S rRNA gene and the active bacterial community based on 16S rRNA will support a better understanding of bacterial community structure and function in marine sediments. In this study, the total and active bacterial community structures in surface sediments from the Bohai Sea and South Yellow Sea were investigated at DNA and RNA level using quantitative real-time polymerase chain reaction and Illumina high-throughput sequencing, respectively. The results show that the 16S rRNA gene abundances of bacterial communities are 1-2 orders of magnitude higher than the transcript abundances. The total bacterial community is more diverse compared to the active bacterial community, and there are distinct differences between them. The bacteria in the sediments take part in active chemoheterotrophy, sulfate reduction, and nitrification. Moreover, 16S rRNA gene-based sequencing misestimates some important functional microbiota when exploring bacterial community functions. The 'rare biosphere' in the total bacterial communities consists of actively transcriptional players, which could play key roles in biogeochemistry cycles. Overall, in the analysis of bacterial communities in marine sediments from a stable sedimentary environment, it is beneficial to use the 16S rRNA sequencing to reflect the true ecological status.


Assuntos
Bactérias/genética , Sedimentos Geológicos , DNA , DNA Bacteriano , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA
11.
J Phycol ; 56(6): 1505-1520, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32602937

RESUMO

Skeletonema marinoi is one of the most widespread marine planktonic diatoms in temperate coastal regions and sometimes can form massive blooms. Yet, the molecular mechanisms of triacylglycerol (TAG) synthesis in nutrient-deficient conditions for this species are still unknown. This study aimed to investigate how the TAG biosynthetic pathway of S. marinoi reacts to the culture age and nitrogen (N) or phosphorus (P) deficiency at molecular levels. Meanwhile, we also described the physiological and biochemical changes of S. marinoi in response to N or P starvation over time. To obtain reliable qRT-PCR data, six putative reference genes were identified for assessing expression stability using geNorm and BestKeeper software, and Actin exhibited the most stable expression across 45 tested S. marinoi samples. We found that the expression of TAG biosynthesis-related genes and ACCase enzyme activity varied in response to the different nutrient conditions and culture age. Taken together, we speculated that the capacity of TAG biosynthesis in S. marinoi is induced by N or P stress, and increases with culture age. Furthermore, TAG biosynthesis appears to respond more strongly to P deficiency than to N deficiency. Our study provides important insights into how diatoms regulate the TAG biosynthetic pathway when stressed by nutrient limitation. Besides, the data obtained from this study also provide useful clues for further exploring genes that can be used for metabolic engineering to enhance lipid production.


Assuntos
Diatomáceas , Diatomáceas/genética , Nitrogênio , Fosfatos , Fósforo , Triglicerídeos
12.
Microorganisms ; 8(2)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023944

RESUMO

Bacterial and archaeal communities play important roles in wetland ecosystems. Although the microbial communities in the soils and sediments of wetlands have been studied extensively, the comprehensive distributions of planktonic bacterial and archaeal communities and their responses to environmental variables in wetlands remain poorly understood. The present study investigated the spatiotemporal characteristics of the bacterial and archaeal communities in the water of an artificially irrigated estuarine wetland of the Liaohe River, China, explored whether the wetland effluent changed the bacterial and archaeal communities in the Liaohe River, and evaluated the driving environmental factors. Within the study, 16S rRNA quantitative PCR methods and MiSeq high-throughput sequencing were used. The bacterial and archaeal 16S rRNA gene abundances showed significant temporal variation. Meanwhile, the bacterial and archaeal structures showed temporal but not spatial variation in the wetland and did not change in the Liaohe River after wetland drainage. Moreover, the bacterial communities tended to have higher diversity in the wetland water in summer and in the scarce zone, while a relatively higher diversity of archaeal communities was found in autumn and in the intensive zone. DO, pH and PO4-P were proven to be the essential environmental parameters shaping the planktonic bacterial and archaeal community structures in the Liaohe River estuarine wetland (LEW). The LEW had a high potential for methanogenesis, which could be reflected by the composition of the microbial communities.

13.
J Phycol ; 56(2): 310-323, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31628865

RESUMO

Diatoms are unicellular algae with a set of extraordinary genes, metabolic pathways, and physiological functions acquired by secondary endosymbiosis, especially for their efficient photosynthetic carbon fixation mechanisms, which can be a reason for their successful environmental adaptation and great contribution to primary production. Based on the available genomic information, the expression patterns of carbon fixation genes were analyzed using transcriptomic sequencing and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in Skeletonema marinoi. Meanwhile, suitable reference genes applying to specific experimental treatments were selected. In our results, carbon fixation genes were standardized by actin and TATA box-binding protein-coding genes in growth phase samples and stress conditions, respectively. It was found that a series of carbon fixation genes, such as the pyruvate orthophosphate dikinase (PPDK)-coding gene, had significantly up-regulated expression in nitrogen-starvation, phosphate-starvation, and low-temperature conditions, but consistently down-regulated in silicate-starvation treatment. These carbon fixation genes exhibited variable expression levels in different conditions and will be useful for investigating gene expression mechanisms in S. marinoi and improve our understanding of diatom carbon fixation pathways.


Assuntos
Diatomáceas , Carbono , Ciclo do Carbono , Diatomáceas/genética , Nitrogênio , Fosfatos , Silicatos , Temperatura
14.
Sci Total Environ ; 703: 134884, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767325

RESUMO

The hadal environment is the deepest part of the ocean and harbors a significant number of unique microbial communities. Here, we collected core sediment samples of Southern Yap Trench with the deep-sea manned submersible Jiaolong and analyzed the microbial community structure and abundance in the samples through high-throughput sequencing and real-time fluorescence quantitative PCR (qPCR), taking physicochemical parameters into account to explore potential environmental drivers and metabolic pathways therein. Considering the typical "V-shape" topography and frequent sediment collapses on trench walls, the core sediments of Southern Yap Trench harbored distinct microbial populations with fluctuating distributions and metabolic processes dominated by Proteobacteria and Thaumarchaeota. To discover the main potential metabolic processes of microbes, functional genes were detected by qPCR. The abundance of bacteria was greater than that of archaea in Southern Yap Trench sediments. The abundance of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), sulfate-reducing bacteria (SRB) and denitrifying bacteria (denitrifier) decreased with increasing depth and decreasing total organic carbon (TOC%) and total nitrogen (TN%) and showed a positive and significant correlation with TOC% (P < 0.01), TN% (P < 0.01), TOC/TN molar ratio (C/N ratio) (P < 0.01) and median grain size (P < 0.01). From the perspective of function based on the 16S rRNA gene, aerobic ammonium oxidization, carbon assimilation, and chemoheterotrophic function may be the dominant processes in Southern Yap Trench sediments. Moreover, considering the isolated geomorphological and hydrological characteristics of Southern Yap Trench, we hypothesized that the distinct hadal microbial ecosystem was driven by the endogenous recycling of organic matter in the hadal sediments associated with the trench geomorphology.


Assuntos
Archaea , Bactérias , Amônia , Ecossistema , Sedimentos Geológicos , Oxirredução , Filogenia , RNA Ribossômico 16S
15.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31757826

RESUMO

Diatoms are important phytoplankton and contribute greatly to the primary productivity of marine ecosystems. Despite the ecological significance of diatoms and the importance of programmed cell death (PCD) in the fluctuation of diatom populations, little is known about the molecular mechanisms of PCD triggered by different nutrient stresses. Here we describe the physiological, morphological, biochemical, and molecular changes in response to low levels of nutrients in the ubiquitous diatom Skeletonema marinoi The levels of gene expression involved in oxidation resistance and PCD strongly increased upon nitrogen (N) or phosphorus (P) starvation. The enzymatic activity of caspase 3-like protein also increased. Differences in mRNA levels and protein activities were observed between the low-N and low-P treatments, suggesting that PCD could have a differential response to different nutrient stresses. When cultures were replete with N or P, the growth inhibition stopped. Meanwhile, the enzymatic activity of caspase 3-like protein and the number of cells with damaged membranes decreased. These results suggest that PCD is an important cell fate decision mechanism in the marine diatom S. marinoi Our results provide important insight into how diatoms adjust phenotypic and genotypic features of their cell-regulated death programs when stressed by nutrient limitations. Overall, this study could allow us to better understand the molecular mechanism behind the formation and termination of diatom blooms in the marine environment.IMPORTANCE Our study showed how the ubiquitous diatom S. marinoi responded to different nutrient limitations with PCD in terms of physiological, morphological, biochemical, and molecular characteristics. Some PCD-related genes (PDCD4, GOX, and HSP90) induced by N deficiency were relatively upregulated compared to those induced by P deficiency. In contrast, the expression of the TSG101 gene in S. marinoi showed a clear and constant increase during P limitation compared to N limitation. These findings suggest that PCD is a complex mechanism involving several different proteins. The systematic mRNA level investigations provide new insight into understanding the oxidative stress- and cell death-related functional genes of diatoms involved in the response to nutrient fluctuations (N or P stress) in the marine environment.


Assuntos
Apoptose , Diatomáceas/fisiologia , Expressão Gênica , Fitoplâncton/fisiologia , Nitrogênio/deficiência , Nutrientes/fisiologia , Oxirredução , Fósforo/deficiência
16.
Mar Pollut Bull ; 149: 110507, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31421568

RESUMO

This study focused on the bloom-developing process of the giant jellyfish, Nemopilema nomurai, on phytoplankton and microzooplankton communities. Two repeated field observations on the jellyfish bloom were conducted in June 2012 and 2014 in the southern Yellow Sea where blooms of N. nomurai were frequently observed. We demonstrated that the bloom was made up of two stages, namely the developing stage and the mature stage. Total chlorophyll a increased and the concentrations of inorganic nutrients decreased during the developing stage, while both concentrations maintained stable and at low levels during the mature stage. Our analysis revealed that phosphate excreted by growing N. nomurai promoted the growth of phytoplankton at the developing stage. At the mature stage, size compositions of microzooplankton were altered and tended to be smaller via a top-down process, while phytoplankton compositions, affected mainly through a bottom-up process, shifted to be less diatoms and cryptophytes but more dinoflagellates.


Assuntos
Fitoplâncton/crescimento & desenvolvimento , Cifozoários/fisiologia , Zooplâncton/fisiologia , Animais , Biomassa , China , Clorofila A/análise , Diatomáceas/fisiologia , Dinoflagelados/fisiologia , Oceanos e Mares , Fosfatos/metabolismo
17.
Syst Appl Microbiol ; 42(3): 383-396, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30679000

RESUMO

Anaerobic ammonium oxidation (anammox) is an important process in marine nitrogen cycle. In this study, diverse anammox bacteria were identified in the sediments of the Changjiang (Yangtze) Estuary and its adjacent area. Specifically, the community characters of anammox bacteria in the studied area were studied by quantitative polymerase chain reaction (qPCR), as well as 16S rRNA gene- and functional gene (hzo)-based Roche 454 sequencing. The abundance of denitrifying bacteria detected by the nirS gene was greater than that of anammox bacteria. 16S rRNA and hzo gene fragments affiliating with known anammox bacterial lineages were recovered, and the two major phylotypes belonged to the Candidatus Scalindua (Ca. Scalindua) genus, with >90% sequence similarity. A phylogenetic analysis detected the Scalindua and Brocadia genera together with some anammox-like bacterial clusters, which suggested a higher diversity in the studied ecosystem than in open ocean environment, where only Scalindua genus was detected. A redundancy analysis (RDA) showed that total organic carbon (TOC) and total nitrogen (TN) content in sediments significantly influenced anammox bacterial abundance of. Spearman correlation analyses confirmed that the spatial variation in anammox bacterial abundance was highly correlated with TOC (P<0.01) and TN (P<0.01) contents in sediments.


Assuntos
Compostos de Amônio/metabolismo , Bactérias Anaeróbias/fisiologia , Estuários , Sedimentos Geológicos/microbiologia , Microbiota , Rios/microbiologia , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/metabolismo , Biodiversidade , DNA Bacteriano/genética , Genes Bacterianos/genética , Sedimentos Geológicos/química , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
18.
Huan Jing Ke Xue ; 39(1): 438-449, 2018 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965712

RESUMO

Sulfate-reducing prokaryotes (SRP) and sulfur-oxidizing prokaryotes (SOP) play vital roles in the sulfur cycle. The SRP community was used to represent a microbial community with high richness and diversity. The 454 pyrosequencing, Illumina high-throughput sequencing, and traditional clone library methods that target the dissimilatory sulfite reductase ß subunit gene (dsrB), which encodes a key enzyme in the sulfate reduction pathway, were used to compare the differences in SRP community characteristics. Comparative analyses suggested that Illumina high-throughput sequencing was a more appropriate method for SRP (high richness and diversity) community studies. The SOP soxB gene (~750 bp) was used as a representative of the long-sequence segment. The 454 pyrosequencing and Illumina high-throughput sequencing methods were used to compare the differences in SOP community characteristics. The results revealed that 454 pyrosequencing did not reflect its advantage of a longer read length; whereas, the Illumina high-throughput sequencing with more numerous and shorter sequence reads was more suitable when the soxB gene was used to investigate the community composition and diversity of SOP.


Assuntos
Bactérias/classificação , Sedimentos Geológicos/microbiologia , Bactérias Redutoras de Enxofre , Enxofre/química , Genes Bacterianos , Oxirredução , Filogenia , Água do Mar/microbiologia , Sulfatos
19.
AMB Express ; 8(1): 79, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29744605

RESUMO

In 2013, the "Qingdao oil pipeline explosion" released an estimated 2000 tons of oil into the environment. Sediment samples were collected from ten sites in Jiaozhou Bay and Shilaoren Beach to evaluate the influence of the spilled oil on the benthic environment 3 years after the oil spill accident. The compositions of oil, bacterial diversity and biotoxicity were examined in this study. The results showed that the concentration of total petroleum hydrocarbons (TPHs) peaked near the oil leak point and gradually decreased along the coastline, ranging from 21.5 to 133.2 µg/g. The distribution of polycyclic aromatic hydrocarbons (PAHs) was correlated with TPH, and naphthalenes were dominant in the 20 detected PAHs. The bacterial diversities in seriously polluted and slightly polluted sediments were completely different. As degrading bacteria, Alcanivorax and Lutibacter were the main genera at the oil-polluted sites. The analysis of biotoxicity by the luminescent bacteria method showed great differences among the polluted sites, the control site in Jiaozhou Bay, and the non-polluted site outside of Jiaozhou Bay. The biotoxicity also peaked at the site near the oil leak point. These results indicate that the oil spill that occurred 3 years ago still affects the environment and impacts the bacterial communities in the sediments.

20.
Front Microbiol ; 9: 116, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29456526

RESUMO

Ammonia oxidation plays a significant role in the nitrogen cycle in marine sediments. Ammonia-oxidizing archaea (AOA) and bacteria (AOB) are the key contributors to ammonia oxidation, and their relative contribution to this process is one of the most important issues related to the nitrogen cycle in the ocean. In this study, the differential contributions of AOA and AOB to ammonia oxidation in surface sediments from adjacent waters of Rushan Bay were studied based on the ammonia monooxygenase (amoA) gene. Molecular biology techniques were used to analyze ammonia oxidizers' community characteristics, and potential nitrification incubation was applied to understand the ammonia oxidizers' community activity. The objective was to determine the community structure and activity of AOA and AOB in surface sediments from adjacent waters of Rushan Bay and to discuss the different contributions of AOA and AOB to ammonia oxidation during summer and winter seasons in the studied area. Pyrosequencing analysis revealed that the diversity of AOA was higher than that of AOB. The majority of AOA and AOB clustered into Nitrosopumilus and Nitrosospira, respectively, indicating that the Nitrosopumilus group and Nitrosospira groups may be more adaptable in studied sediments. The AOA community was closely correlated to temperature, salinity and ammonium concentration, whereas the AOB community showed a stronger correlation with temperature, chlorophyll-a content (chla) and nitrite concentration. qPCR results showed that both the abundance and the transcript abundance of AOA was consistently greater than that of AOB. AOA and AOB differentially contributed to ammonia oxidation in different seasons. AOB occupied the dominant position in mediating ammonia oxidation during summer, while AOA might play a dominant role in ammonia oxidation during winter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...